Structure Maps of Close-Packed Layered Compounds and DNA

J. Hauck,* D. Henkel,* M. Klein, \dagger and K. Mika*
*IFF and $\dagger I B T$, Research Center Jülich, D-52425 Jülich, Germany

Received October 30, 1998; in revised form February 18, 1999; accepted February 19, 1999

Abstract

Close-packed layered compounds such as $\mathrm{Fe}_{x} \mathrm{Ga}_{2} \mathrm{~S}_{3+x}$ and $\mathrm{N}_{x} \mathrm{C}_{3} \mathrm{Al}_{4+x}(x=0-4)$ are analyzed as chains of covalent-bonded $\mathrm{S}=\mathrm{Ga}(-\mathrm{S}-\mathrm{Fe})_{x}-\mathrm{S}-\mathrm{Ga}=\mathrm{S} \quad$ or $\quad \mathrm{Al} \equiv \mathbf{C}(-\mathrm{Al}=\mathrm{N})_{x}-\mathrm{Al}=\mathbf{C}=\mathrm{Al}$ $(-\mathrm{N}=\mathrm{Al})_{x^{\prime}}-\mathrm{C} \equiv \mathrm{Al}$ with delocalized bonds. The rules for valence compounds allow $R M, R(M R)_{n}(n=1,2,3), R M M R$, and different combinations and substitutions. The conformation of the chains is characterized by the Jagodzinski-Wyckoff symbols \boldsymbol{c} and h and a similar notation s and t at the occupation of tetrahedral sites. The interactions between the different atoms are analyzed by structure maps with the self-coordination numbers of nearest and next-nearest neighbors as parameters. A similar analysis of 18 different DNA or RNA reveals four different groups within different fields of the structure map similar to solid solutions or nonperiodic polytypes of layered compounds. © 1999 Academic Press Key Words: structure map; linear valence compounds; layered compounds; DNA.

1. INTRODUCTION

All atoms of valence compounds either accept or provide valence electrons to obtain a stable octet configuration $n s^{2} n p^{6}$; i.e., all s and p orbitals are completely filled or completely empty. The octets of the atoms can be completed in two different ways, as outlined for different covalent and ionic chains in Tables 1a. Electrons are shared between the atoms for covalent interactions or are donated by the metal atoms to the nonmetal atoms with increased electronegativity for ionic interactions (1,2). According to Pauling the degree of ionicity of a bond is related to the electronegativity difference between the atoms (1-3). Structure maps $(4,5)$ are a different approach to analyzing interactions between atoms, as is outlined for linear chains of a and b atoms (or structural units). The different structures are characterized by the self-coordination numbers T_{i} of the minority component a with other a atoms (or units) in the chain with $a_{x} b_{y}$ composition $(r=y / x \geq 1)$. Each a or b in a chain has a maximum of $T_{i}^{\max }=2$ nearest, next-nearest, and third-nearest neighbors $(i=1-3)$. In long chains the different T_{i} values of a species are averaged. The structures are characterized by $T_{1} T_{2} T_{3} ; r$ and are plotted in $T_{1} T_{2}$ maps
for constant r or in an $\alpha_{1} \alpha_{2}$ map for different r values (Fig. 1). The short-range order parameters $\left(-1 \leq \alpha_{i} \leq 1\right)$ can be obtained from T_{i} values by $\alpha_{i} T_{\mathrm{i}}^{\max }=T_{i}-\left(T_{\mathrm{i}}^{\max }-T_{i}\right) / r$. All structures at $r=1$ composition are within a triangle with the three structures $a b, a_{2} b_{2}$, and $a_{\infty} b_{\infty}$ at corners and a random distribution in the center $\left(\alpha_{i}=0, T_{i}=2 /(r+1)\right)$. The borderline is varied in particular for low α_{1} and α_{2} values at increasing r with $-\alpha_{i}=1 / r$. The structures at the corners can be correlated with repulsive interactions $(a b)$, attractive interactions $\left(a_{2} b_{2}\right)$, or segregation $\left(a_{\infty} b_{\infty}\right)$. The interactions are varied for structures at the borderlines, which can be considered combinations of structural units. The $a b_{2} a_{2} b_{2}$ structure at the upper right border, for example, is a combination of $a_{2} b_{2}$ and $a b_{2}$ units. The α_{i} values of a and b atoms are identical for binary compounds $a_{x} b_{y}$. The chains of the present investigation, containing three or four constituents such as the atoms M, N, and R in layered compounds or the four different bases in nucleic acids, exhibit up to three or four different points in the structure map if the self-coordination numbers and concentrations are different.
In close-packed layered compounds $M_{x} N_{y} R_{z}$ (Table 1) the M, N, and R atoms contribute different numbers of electrons to the bonding of the neighboring atoms. The formation of close-packed structures, many as polytypes with different stacking, indicates weak interactions. We suggest delocalized covalent bonds to the three atoms of neighboring layers similar to bonds in aromatic compounds or CO_{3}^{2-} groups and to dipole-dipole bonding between neighboring R atoms. The bond strength shown for the chain will be reduced by the delocalization. The present investigation shows a correlation between the sequences of layers and the stacking sequences and can explain some defects such as vacancy formation or a disorder of M and N atoms. The distance $\Delta z \quad c / a$ between layers, which is ≈ 0.8 for closepacked metal atoms (N form), is reduced to $0.2-0.8$ at the occupation of interstitial sites (I form) or to 0.2 for ordered body-centered alloys (B form).
The basic components of DNA are alternating units of 2^{\prime}-deoxyribose (D) and phosphate groups (P) forming a DP chain with phosphodiester bonds between the 5^{\prime} position of

TABLE 1a
Composition $M_{x} N_{y} R_{z}$ and Different Types of Chains RM, $(R M)_{n} R(n=1-3)$, and $R N R M$ Which Can Be Formed by Atoms with One, Two, or Three Bonds, Number of Valence Electrons of M, N, and R Atoms, and Some Experimental or Theoretical Examples (in Brackets)

$M_{x} N_{y} R_{z}$	$e_{M} e_{N} e_{R}$	Covalent chain	Ionic chain
$R M$	17	$\mathrm{I}-\mathrm{Cu}$	I Cu
$R M$	26	$\mathrm{S}=\mathrm{Zn}$ or $-\mathrm{S}-\mathrm{Zn}-$	S Zn
$R M$	35	$\mathrm{N} \equiv \mathrm{Al}$ or $-\mathrm{N}=\mathrm{Al}-$ or $=\mathrm{N}-\mathrm{Al}=$	N Al
RM	44	$-\mathrm{C} \equiv \mathrm{Si}-$ or $=\mathrm{C}=\mathrm{Si}=$	C Si
RMR	027	I-Cd-I	I Cd I
RMR	0612	$(\mathrm{Cu}-\mathrm{S}-\mathrm{Cu})$	$\begin{array}{llll}\mathrm{Cu} & \mathrm{S} & \mathrm{Cu}\end{array}$
RMR	046_{2}	$\mathrm{S}=\mathrm{Sn}=\mathrm{S}$	S Sn S
RMR	042_{2}	($\mathrm{Mg}=\mathrm{C}=\mathrm{Mg}$)	Mg C Mg
$(R M){ }_{2} R$	$03_{2} 6_{3}$	$\mathrm{S}=\mathrm{In}-\mathrm{S}-\mathrm{In}=\mathrm{S}$	S In S In S
$(R M){ }_{2} R$	$05_{2} 2_{3}$	$(\mathrm{Mg}=\mathrm{N}-\mathrm{Mg}-\mathrm{N}=\mathrm{Mg})$	$\mathrm{Mg} \quad \mathrm{N} \mathrm{Mg} \quad \mathrm{N} \mathrm{Mg}$
$(R M))_{3} R$	$04_{3} 5_{4}$	$\mathrm{N} \equiv \mathrm{Th}-\mathrm{N}=\mathrm{Th}=\mathrm{N}-\mathrm{Th} \equiv \mathrm{N}$	N Th N Th N Th N
$(R M){ }_{3} R$	$04_{3} 3_{4}$	$\mathrm{Al} \equiv \mathrm{C}-\mathrm{Al}=\mathrm{C}=\mathrm{Al}-\mathrm{C} \equiv \mathrm{Al}$	Al C Al C Al C Al
RNRM	245	$\mathrm{N} \equiv \mathrm{Th}-\mathrm{N}=\mathrm{Mg}$ or $-\mathrm{N}=\mathrm{Th}=\mathrm{N}-\mathrm{Mg}-$	N Th N Mg
RNRM	6432	$\mathrm{Al} \equiv \mathrm{C}-\mathrm{Al}=\mathrm{S}$ or $-\mathrm{Al}=\mathrm{C}=\mathrm{Al}-\mathrm{S}-$	Al C Al S

TABLE 1b

Different Elements with e_{i} Valence Electrons in the Order

 of Increasing Size [10]| 1 | Cu Ag Li |
| :---: | :---: |
| 2 | (Ni Co Fe $\mathrm{Mn}^{\mathbf{n}} \underline{\underline{\mathrm{Zn}} \text { (} \mathrm{Ge} \text {) } \mathrm{Cd} \mathrm{Hg}(\mathrm{Sn} \mathrm{Mg} \mathrm{Pb} \mathrm{Th}) ~}$ |
| 3 | $(\mathrm{Ni}$ Fe- Cr$) \underline{\mathrm{Al}} \mathrm{Ga}$ In (Bi) |
| 4 | C. Si (Pt Mo W Ta Nb) Sn (Zr) |
| 5 | $\underline{\mathrm{N}} \mathrm{P}$ As |
| 6 | S Se Te |
| 7 | Cl Br I |

Note. The elements shown in brackets contain also other electrons. Zn, Al, Ga, and N atoms (underlined) occupy tetrahedral, Mn, In, C, and trivalent Fe (dashed underlined) tetrahedral or octahedral sites.
one deoxyribose and the 3^{\prime} position of the next deoxyribose $(6-9)$. One of the four bases adenine (a), thymine (t), cytosine (c), and guanine (g) is attached to the 1^{\prime} position of each deoxyribose. Each a is linked to a t of the neighboring chain by two hydrogen bonds, and each g is linked to a c by three hydrogen bonds. The a and g units are larger than the t and c units. The complementary strands are twisted around each other in the now familiar "double helix," with the bases in the center and the hydrophilic deoxyribose (or ribose in RNA) and phosphate residues on the outside. The exact DNA structure is influenced by several factors such as the sequence of bases and the interaction with the surrounding water. The Watson and Crick structure (B form) is a righthanded helix with 10 base pairs (bp) per turn and a distance $d=0.34 \mathrm{~nm}$ between the base pairs. A more compact form (A form) with about 11 bp per turn and $d=0.29 \mathrm{~nm}$ occurs

FIG. 1. Structure map of one-dimensional chain of a and b units with short-range order parameters $1 \geq \alpha_{1,2} \geq-1$, which are obtained from the self-coordination number T_{1} of nearest and T_{2} of next-nearest neighbors by $2 \alpha_{\mathrm{i}}=T_{\mathrm{i}}-\left(2-T_{\mathrm{i}}\right) / r$, where $r \geq 1$ is the ratio of a and b units. The maximum range of the map varies with r. The different lines $\mathrm{C}, \mathrm{S}, \mathrm{D}$, and T and the point M contain clusters (C) of a_{2}, a_{3}, etc., single units (S) $a b_{2}$, $a b_{3}$, etc., double units (D) $a b a b_{2}, a b a b_{5}$, triple units (T) $a b a b a b_{2}, a b a b a b_{4}$, or multiple units (M) $a b$ of a. QC is obtained for a layered quasi-crystal.
at reduced water content. Certain DNA sequences with alternating g and c bases tend to form a left-handed helix (Z form), at least over a short distance, with 12 bp per turn and $d=0.38 \mathrm{~nm}$. The different rotations give rise to a winding of the helix into coils (6). The in vitro structures of the DNAs listed in Table 3, however, are not known in detail (9), and the number of different structures is probably larger than the number of polytypes in layered compounds. The interactions between the bases of one strand are assumed to be very weak because of the absence of direct bonding (in helices without defects). Dipole-dipole interactions are considered besides the van der Waals interactions because of partial positive or negative charges in the neighborhood of the $\mathrm{N}-\mathrm{H}--\mathrm{O}$ or $\mathrm{N}-\mathrm{H}--\mathrm{N}$ hydrogen bonds. The present investigation shows that sequences of bases deviate from a random distribution $\left(\alpha_{i}=0\right)$ in such a way that attractive or repulsive interactions are preferred in some portions of the DNA.

2. CLOSE-PACKED LAYERED STRUCTURES

Many metals and alloys form close-packed structures. Metal atoms with weak bonding behave like tennis balls packed in a basket. The packing consists of coplanar hexagonal layers (Fig. 2). Successive layers are stacked, with centers of spheres falling directly above the centers of the triangular interstices of the two-dimensional layer below. Each layer has two sets of triangular interstices, as outlined

ABCABCABCAB

FIG. 2. Close-packed hexagonal layer of spheres in A position, unit cell ((0001) projection, below) and B or C position of consecutive layers, e.g., $A B A B(h h)$ or $B C A C\left(c_{2} h_{2}\right),(A) B B(A)\left(s_{2}\right)$, and $(C) A A(B)\left(t_{2}\right)$, as explained in the text ((110) projection, above). The single $R-M$ bond is delocalized to three neighbors similar to CO_{3}^{2-} (below).
for the unit cell in Fig. 2. Each of the two sets forms the same lattice as the spheres themselves. The three different positions, which can be occupied by metal atoms in successive layers, are conventionally denoted as the A, B, and C positions. Most of the elements except Eu, U, and Np can be obtained in a close-packed modification (1,4). Some metals like La and Ce or noble gases like He can crystallize in different structures depending on the temperature and on the isotope (He). The lanthanides La to Sm, Gd, and the actinides Am to Cf crystallize in the $A B A C$ or chch $=(c h)_{2}$ stacking. Sm, Gd, and the heavier lanthanides Tb to Ho , Tm, Lu can crystallize also in the $A B A B C B C A C$ or chhchhchh $=\left(c h_{2}\right)_{3}$ stacking. The Jagodzinski-Wyckoff stacking symbols h and c describe a layer as h or c type according to whether the layers on each side of it are of the same type, such as for B in $A B A$ or of different types as for B in $A B C$. The metals show a preference for simple sequences such as $h h, c c c,(c h)_{2},\left(c h_{2}\right)_{3}$, or $\left(h c_{2}\right)_{3}$. Other sequences such as $h c h c_{4}, c h c h_{3}, h c h c_{2}, c h c h_{2}, c h_{6}, c h_{3}, c h_{2}$ $c h_{3}$, or $h_{2} c_{2}$ are found in alloys $M_{x} N_{y}(1,4)$.

Atoms of close-packed structures with diameter $d=1$ have $T_{1}=6$ nearest neighbors in the same layer and $T_{1}=6$ neighbors in the two adjacent layers (3 in each) at distance d. The number $T_{2}=6$ of second-nearest neighbors at distance $\sqrt{2} d$ is also identical for all close-packed structures. The atoms of the $h h$ structure, however, have $T_{3}=2$ third-nearest neighbors at distance $\sqrt{8 / 3} d$ and 18 fourth-nearest neighbors at distance $\sqrt{3} d$, while atoms of $c c c$ packing have 24 third-nearest neighbors at distance $\sqrt{3} d$. The metal atoms of the sequences $h c, c h c, h c h, c h_{3}$, and $h_{2} c_{3}$ have two different values of T_{3} and higher coordination shells. The sequences $h c$, $c h c$, and $h c h$ are observed in $\mathrm{NiAs}, \mathrm{NbS}_{2}$, and
CdCl_{2} structures, respectively. The more complex structures contain three or more atoms with different environments such as $h c h c_{4}, c_{3} h_{4}$, or $c h_{2} c_{2} h_{2}$ (for $M N_{2} R_{4}$ composition), $\operatorname{chch}_{3}\left(M N_{2} R_{3}\right)$, or $h c_{3}, h_{2} c_{6}$ or $c h_{2} c h c_{2} h\left(M N R_{2}\right)$. These stackings, however, are not observed for these compositions.

The structures of the $M_{x} N_{y} R_{z}$ compounds $(1,2)$ listed in Table 1a are more complex because of the different coordination of M or N metal atoms between layers of nonmetal R atoms. These compounds are usually described by the stacking of the R atoms and by a sequence of Greek or lowercase letters for M and N atoms at tetrahedral or octahedral positions (1,2). In the present investigation all M, N, and R atoms are characterized by h, c, s, or t symbols to reduce the number of strings. The s_{2} and t_{2} groups with two atoms at the same positions (at different projection height) are defined similar to the h and c symbols: the trans (or t_{2}) configuration for different positions of the neighbors next to t_{2} and the cis (or s_{2}) configuration at identical positions. In that case the different coordinations of M in a sequence of $R M R$ atoms can be obtained by the symbol ($c=$ octahedral, $h=$ trigonal prismatic, t or $s=$ tetrahedral), and structures with the same sequences of R and M atoms can be compared by the different coordinations of M atoms or -in other words-the different configurations of the chain (Table 2). The alternative description by sequences of A, B, and C positions is not specific and in many cases longer by a factor 2 or 3 than the present notation as was shown before for the $(c h)_{2} \alpha-\mathrm{Nd}$ and $\left(\mathrm{ch}_{2}\right)_{3} \alpha$-Sm structures. The series of ZnS or SiC polytypes $\left(h c_{2}\right)_{2 n+1} h c$ and $\left(h c_{2}\right)_{2 n+1} h c_{3}$ at consideration of R atom packing (1) corresponds to $\left(s_{2} t_{4}\right)_{2 n+1} s_{2} t_{2}$ and $\left(s_{2} t_{4}\right)_{2 n+1} s_{2} t_{6}$ in the present notation ($h=s_{2}, c=t_{2}$). The combinations of $a b_{2}$ and $a b$ structural units of the first series is on the right border of the structure map, while $a b_{2}$ and $a b_{3}$ combinations of the second series $(a=h, b=c)$ are on S approaching $a b_{2}$ at large n.

The hexagonal or pseudohexagonal unit cells exhibit the approximate dimensions $a \approx 0.38 \mathrm{~nm}, c=0.31 \mathrm{pz} \mathrm{nm}$ for sulfides (2) $(z$ is the number of R atoms per formula unit and $p=1,2$, or 3 is the number of chains to obtain identical A positions, such as $p=2$ for $(c h)_{2} \alpha-\mathrm{Nd}$ structure). The distance between R atoms is usually increased by $\sim 7 \%$ for M atoms in octahedral coordination and decreased by $\sim 7 \%$ for M atoms in tetrahedral coordination. The ratio $\Delta z c / a \approx 0.82(p=1, z=1, \Delta z$ is the difference in height $)$ corresponds to the close-packing of spheres (with a diameter $d=0.38 \mathrm{~nm}$). The diameters of Se or Te atoms are ~ 6 or 12% larger in the isotypic compounds. These distances are much larger than the $\mathrm{Se}-\mathrm{Se}$ or $\mathrm{Te}-\mathrm{Te}$ distances 0.23 or 0.29 nm in the chains of hexagonal Se or Te. These chains are arranged spirally about the c axis with a nearest approach by 0.35 or 0.37 nm of Se or Te atoms in different chains. The density of Se or Te atoms in the helix structures is decreased by $\sim 40 \%$ compared to the close-packed structures.

TABLE 2
Composition, Space Group (SG), Pearson Symbol (PS), Layer, and Stacking Sequences of $M_{x} N_{y} R_{z}$ Layered Compounds with the h, c, s_{2}, t_{2} Notation (Fig. 2)

$M_{x} N_{y} R_{z}$	SG	PS	Layer sequence	Stacking sequence
$R M, R M R,(R M){ }_{2} R$, or $(R M)_{3} R$ chains (I form with $\left.0.2 \leq \Delta z \cdot c / a \leq 0.8\right)$				
ZnS 3 C	216	cF8	$R M$	t_{2}
ZnS 2 H	186	hP4	$R M$	s_{2}
ZnS 4 H	186	hP8	$R M$	$s_{2} t_{2}$
ZnS 6 H	186	hP12	RM	$s_{2} t_{4}$
ZnS 12 R	160	hR24	RM	$s_{4} t_{4}$
NaCl	225	cF8	$R M$	c_{2}
Ni As	194	hP4	RM	$h c$
$\delta^{\prime} \mathrm{NNb}$	194	hP4	RM	hc
TiS HT	166	hR18	$R M$	$h_{\text {chec }}^{2}$
MoS 22 H	194	hP6	RMR	h_{3}
$\mathrm{Cd} \mathrm{I}_{2} \quad \mathrm{C} 6$	164	hP3	RMR	c_{3}
C Ta	164	hP3	RMR	c_{3}
$\mathrm{NbS}_{2} 2 \mathrm{H} \quad \mathrm{HT}$	194	hP6	RMR	che
$\begin{array}{llll}\mathrm{Cd} \mathrm{Cl} & \mathrm{C} 19\end{array}$	166	hR9	RMR	hch
$\mathrm{Cd} \mathrm{I}_{2} \mathrm{C} 27$	186	hP6	RMR	$h c_{2}$
$\mathrm{N}(\mathrm{ScTa})$	186	hP6	RMR	$h c_{2}$
MoS ${ }_{2} 3 \mathrm{R}$	160	hR9	RMR	ch_{2}
$\mathrm{Ta} \mathrm{Se}_{2} 4 \mathrm{H}$ (b)	194	hP12	RMR	$c_{3} \mathrm{chc}$
Th $\mathrm{I}_{2} \beta$	194	hP12	RMR	$h_{3} h$ ch
NbSe 24 s (d2)	187	hP12	RMR	$c_{3} h_{3} c_{3} c h c$
$\mathrm{NbSe} \mathrm{S}_{2} 4 \mathrm{H}$ LT	187	hP12	RMR	chch_{2} cchech ${ }_{2}$
$\mathrm{TaSe}_{2} 4 \mathrm{~s}$ (c)	186	hP12	RMR	che ch ${ }_{2}$
$\mathrm{Nb} \mathrm{Se}_{2} 4 \mathrm{~s}$ (d1)	156	hP12	RMR	$c h_{2} c_{2}$ hchc c_{3}
Ta S ${ }_{2} 6 \mathrm{~s}$	160	hR18	RMR	$\mathrm{ch}_{2} c_{3}$
Sn S ${ }_{2} 18 \mathrm{R}$	166	hR27	RMR	$c_{3} h c_{2}$ chc
$\mathrm{Bi}_{2} \mathrm{Te}_{3} \mathrm{I}$	166	hR15	RMRMR	c_{5}
$\mathrm{Pt}_{2} \mathrm{Sn}_{3}$	194	hP10	RMRMR	hchch
$\mathrm{In}_{2} \mathrm{~S}_{3} \gamma$	164	hP5	RMRMR	$h c_{3} h$
$\mathrm{C}_{3} \mathrm{Al}_{4}$	166	hR21	RMRMRMR	$h s_{2}$ cs $_{2} h$
$\mathrm{Th}_{3} \mathrm{~N}_{4}$	166	hR21	RMRMRMR	$h c_{5} h$
$\mathrm{As}_{3} \mathrm{Sn}_{4}$	166	hR21	RMRMRMR	c_{7}
$\mathrm{C}_{3} \mathrm{~V}_{4}$	166	hR21	RMRMRMR	c_{7}
$R N(R M)_{n} R N R$ chains				
$\mathrm{Sn} \mathrm{Sb} \mathrm{S}_{2} \mathrm{Te}_{4}$	166	hR21	RNRMRNR	c_{7}
In $\mathrm{In}_{2} \mathrm{Te}_{4}$ HP	166	hR21	RNRMRNR	c_{7}
$\mathrm{Fe} \mathrm{Fe} 2_{2} \mathrm{~S}_{4}$	166	hR21	RNRMRNR	hchchch
$\mathrm{Mg} \mathrm{Al} \mathrm{S}^{\text {Se }} 4$	166	hR21	RNRMRNR	$h s_{2}$ cs $_{2} h$
$(\mathrm{Cr}, \mathrm{Fe})(\mathrm{Ga}, \mathrm{Fe})_{2} \mathrm{Se}_{4}$	166	hR21	RNRMRNR	$\mathrm{ct}_{2} \mathrm{ct}_{2} \mathrm{C}$
$\mathrm{Fe} \mathrm{Ga}_{2} \mathrm{~S}_{4} \quad \alpha$	164	hP7	RNRMRNR	$h t_{2} \mathrm{ct}_{2} h$
$\mathrm{Pb}_{2} \mathrm{Bi}_{2} \mathrm{Se}_{5}$	164	hP9	$R N(R M)_{2} R N R$	c_{9}
$\mathrm{Fe}_{2} \mathrm{Ga}_{2} \mathrm{~S}_{5}$ 2H	194	hP18	$R N(R M)_{2} R N R$	$h t_{2}$ chct $_{2} h$
$\mathrm{Fe}_{2} \mathrm{Ga}_{2} \mathrm{~S}_{5} 3 \mathrm{R}$	166	hR27	$R N(R M)_{2} R N R$	$h t_{2} c_{3} t_{2} h$
$\left(\mathrm{Mn}_{2} \mathrm{In}_{2}\right) \mathrm{Se}_{5}$	166	hR27	$R N(R M)_{2} R N R$	$\mathrm{ct}_{2} c_{3} t_{2} \mathrm{C}$
$\mathrm{Mg}_{2} \mathrm{Al}_{2} \mathrm{Se}_{5}$	164	hP9	$R N(R M)_{2} R N R$	$h s_{2} c_{3} s_{2} h$
$\mathrm{Ge}_{3} \mathrm{As}_{2} \mathrm{Te}_{6}$	166	hR33	$R N(R M)_{3} R N R$	c_{11}
$\mathrm{Ge}_{4} \mathrm{As}_{2} \mathrm{Te}_{7}$	166	hR39	$R N(R M)_{4} R N R$	c_{13}
$\mathrm{Ge}_{5} \mathrm{As}_{2} \mathrm{Te}_{8}$	164	hP15	$R N(R M)_{5} R N R$	c_{15}
	RN(RM) ${ }_{n} R$	$N R(M R)_{m} N R$ chains	
$\mathrm{NC}_{3} \mathrm{Al}_{5}$	186	hP18	RNRNRMRNR	$h s_{2} \mathrm{Cs}_{4} h$
$\mathrm{N}_{2} \mathrm{C}_{3} \mathrm{Al}_{6}$	166	hR33	RNRMRNRMRNR	$h s_{4} C s_{4} h$
$\mathrm{N}_{3} \mathrm{C}_{3} \mathrm{Al}_{7}$	186	hP26	$R N(R M)_{2} R N R M R N R$	$h s_{6} C s_{4} h$
$\mathrm{N}_{4} \mathrm{C}_{3} \mathrm{Al}_{8}$	166	hR45	$R N(R M)_{2} R N R(M R)_{2} N R$	$h s_{6} C S_{6} h$
Combinations of chains				
$\mathrm{Zn} \mathrm{In} 2 \mathrm{~S}_{4} \mathrm{IIb}$	186	hP14	RM RNRNR	$h s_{2}$ ct $_{2} h$
$\mathrm{Zn} \mathrm{In} 2 \mathrm{~S}_{4} \quad$ IIIa	160	hR21	RM RNRNR	$h s_{2}$ cs $_{2} h$
$\mathrm{Zn} \mathrm{In} 2 \mathrm{~S}_{4} \mathrm{I}$	156	hP7	RM RNRNR	$h t_{2} \mathrm{ct}_{2} h$
$\mathrm{Zn} \mathrm{In} 2 \mathrm{~S}_{4} \quad$ VIa	160	hR42	RM RNRNR	$h s_{2} c t_{2} h h t_{2} \mathrm{Cs}_{2} h$
$\mathrm{Zn} \mathrm{In} 2 \mathrm{~S}_{4}$ IIa	164	hP14	$R N R N R M R$ RM RNRNR	$h t_{2} \mathrm{ct}_{2} h$

TABLE 2-Continued

$M_{x} N_{y} R_{z}$	SG	PS	Layer sequence	Stacking sequence
Combinations of chains				
$\mathrm{Zn}_{2} \mathrm{In}_{2} \mathrm{~S}_{5} \quad \mathrm{IIa}$ (1)	186	hP18	RM RNRMRNR	$h t_{2} c t_{2} s_{2} h$
$\left(\mathrm{Zn}_{2} \mathrm{In}_{2}\right) \mathrm{S}_{5} \quad$ IIa (2)	186	hP18	RM RNRMRNR	$h s_{2} C s_{4} h$
$\mathrm{Zn}_{2} \mathrm{In}_{2} \mathrm{~S}_{5}$ IIIa	160	hR27	RM RNRMRNR	$h s_{2} c t_{2} s_{2} h$
$\left(\mathrm{Zn}_{3} \mathrm{In}_{2}\right) \mathrm{S}_{6}$ Ia	164	hP11	RM RM RNRMRNR	$h s_{2} t_{2} \mathrm{ct}_{2} \mathrm{~s}_{2} h$
$\mathrm{Zn}_{3} \mathrm{In}_{2} \mathrm{~S}_{6} \mathrm{Ib}$	156	hP11	RM RM RNRMRNR	$h s_{2} t_{2} c_{2} s_{2} h$
$\mathrm{Ge} \mathrm{Bi}_{4} \mathrm{Te}_{7}$	164	hP12	RNRMRNR RNRNR	c_{12}
chains containing vacancies at M^{\prime} or N^{\prime} positions				
$(\mathrm{Ga}, \mathrm{In})_{3-x} \mathrm{InS}_{5}$	186	hP18	RM' R NRM'RM'R	$\mathrm{hs}_{2} \mathrm{Cs}_{4} h$
$(\mathrm{Zn}, \mathrm{In})_{4-x}(\mathrm{Se}, \mathrm{S})_{5} \mathrm{IIb}$	164	hP18	$R N^{\prime} R M^{\prime} R N R N^{\prime} R$	$h s_{2} t_{2} c t_{2} h$
			RN'RNRM'RN'R	$h t_{2} \mathrm{Ct}_{2} \mathrm{~s}_{2} h$
$(\mathrm{In}, \mathrm{Ga})_{4.67} \mathrm{~S}_{7}$	164	hP14	RN'RMRN ${ }^{\prime} R\left(R M^{\prime}\right)_{2} R$	$h t_{2} c t_{2} h h c_{3} h$
$(\mathrm{In}, \mathrm{Ga})_{7.33} \mathrm{~S}_{11}$	166	hR72	$R M^{\prime} R M R N^{\prime} R\left(R M^{\prime}\right)_{2} R$	$h s_{2}$ ct $_{2} h h c_{3} h$
			$R N^{\prime} R M R M^{\prime} R$	$h t_{2} c s_{2} h$

$M N_{n}, M_{2} N_{n}(\mathrm{~B}$ form with $\Delta z c / a \approx 0.2, b c c)$

Cs Cl	221	cP2	$M N$	c_{2}
Ce Cd 2	164	hP3	$M N_{2}$	c_{3}
Bi $\mathrm{F}_{3}, \mathrm{Al} \mathrm{Fe}_{3}$	225	cF16	$M N_{3}$	c_{4}
Na Tl	227	cF16	$M_{2} \mathrm{~N}_{2}$	c_{4}
$\mathrm{Al} \mathrm{Mn} \mathrm{Cu}{ }_{2}$	225	cF16	MRNR	c_{4}
$\mathrm{Ag} \mathrm{Sb} \mathrm{Li}{ }_{2}$	216	cF16	$M N R_{2}$	c_{4}
$\mathrm{Al}_{2} \mathrm{Li}_{3}$	166	hR15	$\mathrm{M}_{2} \mathrm{~N}_{3}$	c_{5}
Si Fe 2 HT	164	hP6	MNMN_{3}	c_{6}
$\mathrm{Ni}_{2} \square \mathrm{Al}_{3}$	164	hP5	MRMRNR	c_{6}
$\mathrm{Si}_{2} \mathrm{Li}_{5}$	166	hR21	$M N_{2} M N_{3}$	c_{7}
$\mathrm{Ga}_{4} \mathrm{Li}_{5}$	164	hP9	$M_{2} N_{2} M_{2} N_{3}$	c_{9}
$\mathrm{Ge}_{2} \mathrm{Cu}_{2} \mathrm{Li}_{5}$	164	hP9	$M N R_{2} \mathrm{NMR}_{3}$	c_{9}
$\mathrm{Pb}_{3} \mathrm{Li}_{8}$	166	hR33	$M N_{2} \mathrm{MN}_{3} M \mathrm{~N}_{3}$	c_{11}
$\mathrm{Pb}_{2} \mathrm{Li}_{7}$	164	hP9	$M N_{3} M N_{4}$	c_{11}

Note. The distance between layers $\Delta z c / a$ varies in N, I, and B form.

The distance between layers $\Delta z \cdot c / a$ decreases to about $0.4(0.2-0.8)$ for the occupation of interstitial sites (octahedral, trigonal prismatic or tetrahedral sites, I form, Table 2) and to ~ 0.2 for the occupation of octahedral and tetrahedral sites or the body-centered lattice (B form, Table 2).

3. RULES FOR LINEAR VALENCE COMPOUNDS

In valence compounds $M_{x} N_{y} R_{z}$ the octets of the atoms can be completed if the sum of electrons is 8 or a multiple of 8 (1):

$$
x e_{M}+y e_{N}+z e_{R}=8 z
$$

This equation satisfies the requirement of electroneutrality and can be applied for different distributions of valence electrons, e.g., in ZnS (Table 1):
(a) Formation of Zn^{2+} and S^{2-} ions (ionic chain).
(b) The eight electrons (four pairs) form four bonds to Zn atoms in tetrahedral coordination $(1,5)$.
(c) The electrons are shared between neutral S and Zn atoms with two covalent bonds (covalent chain).
Each atom in a close-packed layered compound has three neighbors in the next layer $\left(1+3\right.$ for tetrahedral t_{2} or s_{2} configuration) (Fig. 2). One bond of $-\mathrm{S}-\mathrm{Zn}-$ with S in t or s position is delocalized to three Zn atoms. Therefore these bonds are weaker than the remaining bond. The delocalization of the double bond of the $\mathrm{S}=\mathrm{Zn}$ group enhances the bond strength to three neighbors compared to the fourth neighbor. The same bond strength for all Zn atoms is achieved at a consideration of both formulas $-\mathrm{S}-\mathrm{Zn}-\mathrm{S}-$ and $\mathrm{S}=\mathrm{Zn}$. The structural data show positive or negative deviations. Equal bonding to all neighboring atoms, as in (b), is also achieved for the three M atoms in octahedral or trigonal prismatic coordination if the chain is symmetric as in $-\mathrm{S}-\mathrm{Mg}$ - or at consideration of resonance hybrids, e.g., of Cu $\mathrm{I}-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{I} \mathrm{Cu}$ or $\mathrm{Mg} \mathrm{S}=\mathrm{Mg}$ and $\mathrm{Mg}=\mathrm{S} \mathrm{Mg}$. The covalent chain (c) allows close-packed layers of neutral atoms in the (001 1) plane and different sequences of M, N, and R atoms in (110), which can explain the ordering of these atoms in most structures.

Table 1a shows the different combinations for binary and ternary compounds. The R and M atoms usually alternate until an M atom is missing, which is indicated by $e_{M}=0$ (5). Therefore chains of $R M R$ occur in $027_{2},\left(061_{2}\right), 046_{2}$, and $\left(042_{2}\right)$ compounds and chains with three or four R atoms in the remaining structures containing 0 . The (0612) or (0422) structures are antistructures to 027_{2} or 046_{2} with $e_{N}+e_{N^{\prime}}$ or $e_{R}+e_{R^{\prime}}=8 n$ (1). In normal valence compounds $M_{x} R_{z}$ without $M-M$ or $R-R$ bonding the number of bonds pointing to each M or R atom is proportional to the number of R or M atoms (z or x). The $R=M-R-M=R$ chains of $M_{2} R_{3}$ compositions are obtained for divalent R and trivalent M (tetravalent R and hexavalent M must not be considered). The $M_{3} R_{4}$ composition yields the largest chain with three tetravalent M atoms. In ternary compounds the length of the chains is extended if 26 groups are introduced into the $03_{2} 6_{3}$ chain or 35 groups into the $04_{3} 5_{4}$ chain at the single bond position. Table 2 shows many experimental examples of $R N(R M)_{n} R N R$ and $R N(R M)_{n} R N R(M R)_{m}$
$N R$ chains. The last example with two different possibilities for the introduction of $-\mathrm{N}=\mathrm{Al}$ - groups was only observed for the antistructures with composition $\mathrm{N}_{x} \mathrm{C}_{3} \mathrm{Al}_{4+x}$ $(x=0-4)$. The chains are symmetrical for $x=2$ and 4 .

Another theoretical approach is the combination of different chains such as $\mathrm{S}=\mathrm{Zn} \mathrm{S}=\mathrm{In}-\mathrm{S}-\mathrm{In}=\mathrm{S}$ in $\mathrm{ZnIn}_{2} \mathrm{~S}_{4}$ modifications, or $\mathrm{Te}=\mathrm{Bi}-\mathrm{Te}-\mathrm{Ge}-\mathrm{Te}-\mathrm{Bi}=\mathrm{Te} \mathrm{Te}=\mathrm{Bi}-\mathrm{Te}-\mathrm{Bi}=\mathrm{Te}$ in $\mathrm{GeBi}_{4} \mathrm{Te}_{7}$ with divalent Ge (1) (Table 2).

Some compounds with trivalent Ga and In contain $\sim 30 \%$ vacancies at the M^{\prime} or N^{\prime} positions (Table 2). In that case ~ 1 of the $3 M$ or N atoms in the neighboring layers is missing and the average charge of M or N atoms is reduced to ~ 2. This can explain the occurrence of vacancies in some cases, e.g., the first Ga^{\prime} and the $\mathrm{Ga}^{\prime \prime}$ position in $(\mathrm{Ga}, \mathrm{In})_{3-x}$ InS_{5} with $\mathrm{S}=\mathrm{Ga}^{\prime} \mathrm{S}=\mathrm{In}-\mathrm{S}-\mathrm{Ga}^{\prime \prime}-\mathrm{S}-\mathrm{Ga}^{\prime}=\mathrm{S}\left(\mathrm{Ga}^{\prime}=\mathrm{Ga}_{0.50} \mathrm{In}_{0.17}\right.$, $\mathrm{Ga}^{\prime \prime}=\mathrm{Ga}_{0.67}$). A second formulation $\mathrm{S}=\mathrm{Ga}^{\prime} \mathrm{S}=\mathrm{In}-\mathrm{S}-\mathrm{Ga}^{\prime \prime}=S$ $\mathrm{Ga}^{\prime}=S$ with equivalent Ga^{\prime} positions requires no vacancies in the $\mathrm{Ga}^{\prime \prime}$ position. The $(\mathrm{In}, \mathrm{Ga})_{4.67} \mathrm{~S}_{7}$ and $(\mathrm{In}, \mathrm{Ga})_{7.33} \mathrm{~S}_{11}$ compounds contain $R-M-R-M-R$ units of $\operatorname{In}_{2} \mathrm{~S}_{3}$ structure with $h c_{3} h$ stacking, but ~ 0.2 additional M atom next to the R atoms at the end of the chain (1) (the Pearson symbols are hP14 and hR72 instead of hP12 and hR57).

The last group of Table 2 considers general valence compounds. These are valence compounds either where the cations do not transfer all their valence electrons-they are used for bonds between them or for nonbonding orbitalsor where the anions due to bonds between themselves do not need as many electrons to complete their octet shell (1). For a compound $M_{x} R_{z}$ with

$$
x\left(e_{M}-e_{M M}\right)+z\left(e_{R}+e_{R R}\right)=8 z
$$

the average number of remaining valence electrons $e_{M M}$ and $e_{R R}$ at M or R atoms can be used to form $M-M$ or $R-R$ bonds, respectively, as for $\mathrm{Cl}-\mathrm{Zr} \equiv \mathrm{Zr}-\mathrm{Cl}, \mathrm{Te}=\mathrm{Pt}=\mathrm{Pt}=\mathrm{Te}$, or $\mathrm{S}=\mathrm{Ga}-\mathrm{Ga}=\mathrm{S}$ in $\mathrm{Zr} \mathrm{Cl}, \mathrm{Pt} \mathrm{Te}, \mathrm{GaS}$ or Ga Se structures. $\mathrm{Bi}_{2} \mathrm{Te}_{3} \mathrm{II}(-\mathrm{Bi}=\mathrm{Bi}-\mathrm{Te}-\mathrm{Te}-\mathrm{Te}-)$ and the hexagonal structures of Se and Te mentioned before are examples for $-\mathrm{Se}-\mathrm{Se}-$ or $-\mathrm{Te}-\mathrm{Te}$ - bonding. The $\mathrm{Pt}_{3} \mathrm{Te}_{4}$ and $\mathrm{Pt}_{2} \mathrm{Te}_{3}$ structures can be considered combinations of $\mathrm{Te}=\mathrm{Pt}=\mathrm{Pt}=\mathrm{Te}$ and $\mathrm{Te}=\mathrm{Pt}=\mathrm{Te}$ chains. Pt and Zr are assumed to be tetravalent, though they do not belong to the elements considered for valence compounds (1). These atoms with lone electron pairs or low electronegativity $(\mathrm{Mg}, \mathrm{Zr})$, given in parentheses (Table 1b), are ordered for increasing size (10). The $\mathrm{Zn}, \mathrm{Al}, \mathrm{Ga}$, and N atoms underlined in Table 1b prefer tetrahedral sites. Divalent Mn , trivalent Fe or In , and tetravalent C (dashed underlined) are observed in tetrahedral or octahedral coordination. Besides this, some ordered alloys such as $\mathrm{Li} \mathrm{Rh}, \mathrm{Cu} \mathrm{Pt}$, and $\mathrm{Pt}_{2} \mathrm{Sn}_{3}$ and some metallic carbides or nitrides such as $\mathrm{Ta}_{2} \mathrm{C}$ or $\mathrm{Th}_{3} \mathrm{~N}_{4}$ (which are not valence compounds) are also listed in Table 2 because of related structures. The distance between layers $\Delta z \cdot c / a \approx 0.8$ is normal (N form) in the close-packed metals, decreased to
$0.2-0.8$ at occupation of interstitial sites (I form), or to ≈ 0.2 in ordered body-centered alloys (B form). $\mathrm{B}_{4} \mathrm{Rh}_{5}$ with the sequence $R M R M R M R M R$ (1), not allowed in the present scheme, is omitted in Table 2. The distances $\Delta z c / a$ (at $p=1$, $z=1$) between neighboring layers usually correspond with the bond strength. The distances between Th and N layers, e.g., of $\mathrm{Th}_{3} \mathrm{~N}_{4}(\mathrm{~N} \equiv \mathrm{Th}-\mathrm{N}=\mathrm{Th}=\mathrm{N}-\mathrm{Th} \equiv \mathrm{N}$ sequence $)$ are 0.51 $(\mathrm{Th}-\mathrm{N}), 0.31(\mathrm{Th}=\mathrm{N}), 0.12(\mathrm{Th} \equiv \mathrm{N})$ and $0.49(\mathrm{~N}$ to N of next chain).

4. STRUCTURE MAPS OF LAYERED COMPOUNDS

The M, N, and R atoms of the different chains listed in Table 2 and the sequences of $\mathrm{a}, \mathrm{t}, \mathrm{g}$, and c bases (11) were analyzed for the different self-coordination numbers and the different α_{i} values plotted in structure maps as was outlined in Section 1.

The layer sequences $M R(a b), R M R M R M R\left(a b a b a b_{2}\right)$, RMRMR $\left(a b a b_{2}\right), R M R\left(a b_{2}\right), R M R ~ R M M R ~ R M R\left(a b_{2}\right.$ $\left.a_{2} b_{2} a b_{2}\right), R M M R R M R\left(a_{2} b_{2} a b_{2}\right)$, and $R M M R\left(a_{2} b_{2}\right)$ (with $M=a$) are at the right border of the map. The interactions between M atoms are repulsive in $M R$ and attractive in $R M M R\left(a_{2} b_{2}\right)$ and are assumed to vary with increasing α_{2}. The positions of the M and R atoms of these binary compounds are at the limit of the straight lines C (cluster), S (single), D (double), T (triple), and M (multi) units. All $a b_{n}$ chains with $n \geq 2$ and combinations of different chains such as $a b_{2} a b_{3}$ are on the line S . All $a b a b_{n}$ containing two alternating a are on line D . The combinations of three alternating a in $a b a b a b_{n}$ are on T and alternating $a b$ units at

M (multi units). At the left border of the map (line C) the size of the a_{n} and b_{n} clusters increases from $a_{2} b_{2}$ to complete segregation $a_{\infty} b_{\infty}$ at increased α_{2}.

The M atoms of ternary chains such as $R N(R M)_{n} R N R$ or $R M R N R N R$ are on the lines S, D, or T depending on the number of $R M$ units. A layered quasi-crystal with a Fibonacci sequence of $a b_{2}$ and $a b$ units $\left(a b_{2} / a b \approx 1.62\right)$ corresponds to QC $\left(\alpha_{2}=0\right)$. The M and N atoms of $\left(\mathrm{Zn}_{2} \mathrm{In}_{2}\right) \mathrm{S}_{5} \operatorname{IIa}(2),(\mathrm{Ga}, \mathrm{In})_{3-x} \mathrm{InS}_{5}$, and other compounds listed in Table 2 (with M and N in brackets) are disordered. In that case the positions of M and N approach $\alpha_{i}=0$ as for disordered alloys (4).

5. NUCLEIC ACIDS

The primary structure of nucleic acids is given by the sequences of the bases adenine (a), thymine (t), cytosine (c), and guanine (g). Table 3 shows the number of $\mathrm{a}, \mathrm{t}, \mathrm{c}$, and g units to calculate, e.g., the ratio $r=(\mathrm{t}+\mathrm{c}+\mathrm{g}) / \mathrm{a}$ for the base a. The ratios $r=1.5-7.5$ of the nucleic acids listed in Table 3 are similar to those for the layered compounds $(r=1-11)$. The $\alpha_{1} \alpha_{2}$ values which were obtained from the averaged self-coordination numbers and r values (Sect. 1) are on S or S^{\prime} (negative S) or in the fields C1-C4 or D1-D4 with α_{i} values similar to those in disordered alloys (4). An alternation of different units such that identical units are separated by at least two other units yields $-\alpha_{1,2}=1 / r$ on line S with the minimum value $r=2$ in $a b_{2}$ (Fig. 1). At $r<2$ (as, e.g., a in secA 7 or 10) the bases can cluster or alternate with other bases (ab). The maximum and minimum α_{i} values

TABLE 3
Characterization of Nucleic Acids by the Number of Adenine (a), Thymine or Uracil (t), Cytosine (c), and Guanine (g) Units (First Number), the Clusters per Mill (Second Number) and the Location on the Structure Map

Nucleic acid	a	t	c	g
secA 7 S.carnosus	1308/154/C3	990/75/C3	564/7/C1	727/21/C1
secA 10 O.lutens chloroplast	1212/207/C3,4	980/169/С3	359/25/C3,4	508/24/C3
enolase 3 S.cerevisiae	523/98/C3	634/120/C3	443/29/C1,2	413/24/C1
enolase 59 A.glutinosa mRNA	473/99/C3	438/71/C4	329/33/C1	415/39/C1,2
enolase 249 Schisosoma mansoni mRNA	12731/125/C4	12776/127/C4	8117/35/C2	8040/37/C2
enolase 2 N.fontalis	691/188/C4	613/90/C2	303/36/C4	361/19/C2
enolase 100 Streptococcus thermophilus	2323/195/C4	1933/153/C4	1021/36/C3	1222/46/C3,4
enolase 1 M.musculus mRNA	363/72/C3	285/28/D2	378/56/C2	407/91/C3
enolase 8 H.sapiens mRNA	340/50/C3	271/22/D1	367/68/C3	420/114/C3
enolase 15 Rat norwegiens mRNA	396/61/C3	378/40/D2	490/84/C2	461/61/C2
enolase 13 Peking duck tan.cryst.	439/71/C3,4	415/58/D1,2	417/96/C3	444/43/C1
enolase 25 Xenopus laevis mRNA	461/93/C4	448/54/D1,2	370/62/C2	441/50/C1,2
secA 21 Synechococcus sp.	905/70/C3	777/51/C2	989/39/C1	1121/40/D1
secA 6 P.sativum mRNA	1120/124/C3,4	996/94/C4	688/28/C1,2	804/50/D3,4
secA 11 S.oleracea chloroplast	1084/101/C3,4	1043/82/C4	689/45/S'	923/53/D1,2
secA 15 Mycobacterium bovis	782/35/C2	667/21/C1,2	1286/38/S	1310/45/D1
secA 8 Escherichia coli	1016/121/C3	853/74/C3	938/29/D1	1004/27/S
secA 4 Streptomyces lividans	709/4/C1	509/10/D1	1351/53/C1	1437/76/D1

FIG. 3. $\alpha_{1} \alpha_{2}$ structure map with experimental points of $M_{x} N_{y} R_{z}$ compounds (see text) and different fields C1-C4 and D1-D4 for a, t, g, and c bases of the nucleic acids listed in Table 3.
of $\sim \pm 0.2$ are smaller than the $1 / r$ values because of the coexistence of clusters (C), single units (S), and double units (D). All sequences of the first group are in the field $\mathrm{C} 1-\mathrm{C} 4$ because of the increased number of clusters (Fig. 3). The structure map suggests small clusters such as $a_{2} b_{2}$ in C 1 and larger clusters in $\mathrm{C} 2,3$, or 4 . The α_{1}, α_{2} values of t units in the second group of eukaryotic (nonbacterial) enolases are in the field D1 or D2 with an increased number of double units (D). In the third group of secAs all α_{1}, α_{2} values of g and some values of c contain an increased number of double units (D). The g value of $\sec A 8$ is on S. In $\sec A 4$ the t and g units have an increased number of double units (D). The four points at negative S (c in secA 11), C4 or D4 (t and g in $\sec \mathrm{A} 6$) are with extended clusters besides alternating $a b$ units. In the first group the percentage of clusters is increased to $10-21 \%$ (a) or $7-17 \%$ (t) or decreased to $1-5 \%$ for c and g compared to the average of 4% for t and 7% for a, c and g .

The mRNA carries the information for the sequence of amino acids in a protein in the form of the genetic code in which each occurrence of one of the 64 groups of three nucleotides (triplets or codons) conveys the information for a specific amino acid (or in some cases a stop signal to indicate the end of the protein) (6). Fifteen amino acids are obtained by symmetrical triplets aaa (Lys), ata (Ile), aca (Thr), aga (Arg), ttt (Phe), tct (Ser), tgt (Cys), tat (Tyr), ccc (Pro), cgc (Arg), cac (His), ctc (Leu), ggg (Gly), gag (Glu), gtg (Val), and gcg (Ala). Arginine (Arg) is obtained by aga or cgc.

The remaining five amino acids, Asn, Asp, Glu, Met, and Trp, can be obtained only by nonsymmetrical triplets. This is only possible because of a given direction from 5^{\prime} to 3^{\prime} on each strand (6) and of stop signals (taa, tag, or tga).

The increased fraction of a and t clusters in the first group would be obtained, e.g., at an increased number of
aaa (Lys) and ttt (Phe) clusters, while the increased percentage of double units for t in the second group could be possible at an increased number of tct (Ser), tgt (Cys), and tat (Tyr).
Two types of right-handed helices (A or B form) with 11 or 10 bp per turn and a left-handed helix (Z form) are known (7). Within the cell the DNA helix is wound up into coils (6). For example, bacterial DNA is normally negatively supercoiled to the extent of about one negative turn per 200 bp . The density is increased by the supercoiling. The Escherichia coli chromosome, in its expanded state, for example, would be several hundred times longer than the bacterial cell itself (6).

There are six parameters for the exact analysis of the translation and rotation from one base pair to the next, which are correlated and depend to a certain extent upon the choice of overall helix axis (8). An approximate description with A, B or Z indices for each base pair in the A, B or Z helix and X values for deviations from the ideal helix by about 10% would show whether there is a correlation between the sequence of bases with, e.g., clustering in certain areas and the approximated configuration of the helix. The sections of the helix containing single bases $(a+g \neq c+t)$ could be indicated by $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{Z}^{\prime}$, and X^{\prime}, respectively.

6. CONCLUSIONS

The layered structures or the nucleic acids can be described by sequences of three or four units. The layered structures with the composition $M_{x} N_{y} R_{z}$ are approximately close-packed R atoms with M and N atoms at interstitial sites. The 74% density of the sphere packing is increased at complete occupation of all the tetrahedral and octahedral interstices by 1.7 and 5.3%, respectively (3,4). The compounds are obtained by divalent $M=\mathrm{Zn}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}$, trivalent $N=\mathrm{Al}, \mathrm{Ga}$, In in sulfides or selenides, or the antistructures with composition $\mathrm{N}_{x} \mathrm{C}_{3} \mathrm{Al}_{4+x}$. These two cases can be considered delocalized covalent bonding within the chains $\mathrm{S}=\mathrm{Ga}-(\mathrm{S}-\mathrm{Fe}-\mathrm{S}-)_{x} \mathrm{Ga}=\mathrm{S}$ for $\mathrm{Fe}_{x} \mathrm{Ga}_{2} \mathrm{~S}_{4+x^{\prime}}$ such as $\mathrm{GaS}, \mathrm{FeGa}_{2} \mathrm{~S}_{4}, \mathrm{Fe}_{2} \mathrm{Ga}_{2} \mathrm{~S}_{5}$ or in chains $\mathrm{Al} \equiv \mathrm{C}(-\mathrm{Al}=\mathrm{N})_{x-1}-$ $\mathrm{Al}=\mathrm{C}=\mathrm{Al}-(\mathrm{N}=\mathrm{Al}-)_{x-1} \mathrm{C} \equiv \mathrm{Al}$ in $\mathrm{N}_{x} \mathrm{C}_{3} \mathrm{Al}_{4+x} \quad(x=0,2,4)$. Other structures with nonsymmetrical chains at insertion of additional units or exchange of M and N atoms are also possible (Table 1). The trivalent $\mathrm{Fe}, \mathrm{Al}, \mathrm{Ga}$, and In , the divalent Mn or Zn , and the C and N atoms of $\mathrm{N}_{x} \mathrm{C}_{3} \mathrm{Al}_{4+x}$ can be on tetrahedral sites. The tetrahedral sites of N or M atoms are characterized in the present investigation by s_{2} or t_{2} in the stacking sequence, if the neighboring atoms are on the same or on opposite sides (Fig. 1). In that case the idealized structures can be described by the layer sequences of M, N, R and the stacking sequences h, c, s_{2}, and t_{2} (Table 2).

In many cases of polytypes such as for ZnS or NbSe_{2} the stacking sequences are much larger than the layer
sequences. In some extended sequences of layers with an occupation of octahedral sites as for $\mathrm{Ge}_{x} \mathrm{As}_{2} \mathrm{Te}_{3+x}(x=3-5)$ the stacking of all atoms is c. Most stacking and layer sequences are symmetric. In $\mathrm{NC}_{3} \mathrm{Al}_{5}$ and $\mathrm{N}_{3} \mathrm{C}_{3} \mathrm{Al}_{7}$ both sequences are asymmetric. Few cases like $\mathrm{Cd}_{2} \mathrm{C} 27$ or $\mathrm{MoS}_{2} 3 \mathrm{R}$ with $R M R$ layer sequence exhibit asymmetric stacking sequences $\left(h c_{2}\right.$ and $\left.c h_{2}\right)$. Some polytypes of this group such as $\mathrm{TaS}_{2} 6 \mathrm{~s}$ with $c h_{2} c_{3}$ can be considered a combination of $c h_{2}\left(\mathrm{MoS}_{2} 3 \mathrm{R}\right)$ and $c_{3}\left(\mathrm{Cd} \mathrm{I}_{2} \mathrm{C} 6\right)$. The five stackings hc (NiAs), chc $\left(\mathrm{NbS}_{2}\right)$, $h c h\left(\mathrm{Cd} \mathrm{Cl}_{2}\right), c h h_{3}(M R)$, and $h_{2} c_{3}\left(M R_{4}\right)$ exhibit identical T_{i} values of all M and R atoms in the three-dimensional packing and can be compared with the Cu or Mg structure with a single set of T_{i} values $(3,4)$. The $\mathrm{NiAs}, \mathrm{NbS}_{2}$, and CdCl_{2} structures are related to $\alpha-\mathrm{Nd}$, Tb HP , and $\alpha-\mathrm{Sm}$ structures (1). The geometry of the $M_{x} N_{y} R_{z}$ compounds can be described approximately by the packing of R atoms with slightly increased or decreased distances at occupation of octahedral or tetrahedral interstices by the metal atoms M, N.

The present investigation shows that most of the layered $M_{x} N_{y} R_{z}$ structures can be described by chains of atoms with one to four directional bonds such as $\mathrm{S}=\mathrm{Ga}-\mathrm{S}-\mathrm{Fe}-\mathrm{S}-$ $\mathrm{Ga}=\mathrm{S}, \mathrm{S}=\mathrm{Sn}=\mathrm{S}$, or $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$. The three-dimensional structures (Fig. 1) and the high symmetry of the chains (with threefold or sixfold axes) show that the bonds are delocalized within the three neighbors of the succeeding layers similarly to, e.g., the $\mathrm{C}=\mathrm{C}$ double bond in benzene or the four bonds in CO_{3}^{2-} groups. The bond direction is fixed only for one neighbor at tetrahedral site occupation. The occurrence of so many polytypes with different stacking suggests a weak directional covalent bond coexisting with the ionic state (Table 1a). The formulation $\mathrm{S} \equiv \mathrm{Ga}-\mathrm{S} \equiv \mathrm{Fe} \equiv \mathrm{S}-\mathrm{Al} \equiv \mathrm{S}, \mathrm{S} \equiv \mathrm{Sn} \equiv \mathrm{S}$ or $\mathrm{Cl} \equiv \mathrm{Cd} \equiv \mathrm{Cl}$ with six bonds for atoms in octahedral or trigonal prismatic coordination and four bonds for tetrahedral coordination (2) suggests a stronger bonding for atoms on octahedral sites. The formulas of the same examples given above (Tables 1a, 2) show, e.g., two bonds for divalent Fe and three bonds for trivalent Ga and can explain the reduced distance between the S atoms next to Ga and the increased distance for the S atoms next to Fe . An Ising-type analysis of the interactions between the different atoms shows a variation from repulsive interactions $R M(a b)$ to attractive in $R M M R$ $\left(a_{2} b_{2}\right)$ sequences. The repulsive interactions decrease for $R M R M R M R\left(a b a b a b_{2}\right), R M R M R\left(a b a b_{2}\right), R M R\left(a b_{2}\right)$ and switch to increasing attractive interactions for $R M R$ $R M M R ~ R M R\left(\begin{array}{lll}a b_{2} & \left.a_{2} b_{2} a b_{2}\right), R M R R M M R\left(a b_{2} a_{2} b_{2}\right) \text {, }\end{array}\right.$ $R M M R\left(a_{2} b_{2}\right)$ (with $\left.M=a\right)$ at the right border of the structure map (Fig. 1). The ionicity with a repulsion of charged atoms increases at increased electronegativity difference and:
(1) The c stacking, e.g., of $\mathrm{MgO}, \mathrm{CaS}$, or BaS in NaCl structure is favored.
(2) The t_{2} compared to s_{2} stacking is favored.
(3) The ionic chain (Table 1a) becomes unstable with respect to the three-dimensional distribution of M and R atoms, e.g., in TiCl_{3} or NbO structures (4).
(4) The distance a between identical atoms of each layer is increased for $\Delta z c / a \approx 0.2$. The compounds are bodycentered alloys, which are ordered in (1111) layers (B form, Table 2). Compounds like BiF_{3} are considered cubic closepacked Bi with F atoms at octahedral and tetrahedral interstices.
The nucleic acids are characterized by chains of $10^{4}-10^{12} \mathrm{bp}$ containing nonperiodic sequences with $10-5000$ bases a,t,c and g in two complementary strands of the double helix. The a and t bases or c and g bases are linked by two or three hydrogen bonds, but not with the neighboring bases at the same strand (unless there are defects). The bases of one strand are connected indirectly by the chain of alternating 2^{\prime}-deoxyribose and phosphate groups. The long strands are characterized by the concentration of the bases and the averaged self-coordination numbers to calculate the shortrange order parameters α_{1} for nearest and α_{2} for nextnearest neighbors within the chain. The deviation of the $\alpha_{1,2}$ values from a random distribution $\left(\alpha_{i}=0\right)$ can be analyzed for a short-range order structure similar to that in disordered alloys or disordered $M_{x} N_{y} R_{z}$ compounds. The map of $\alpha_{1} \alpha_{2}$ values can be analyzed for a preference of clusters $a_{2} b_{2}$ or $a_{3} b_{3}$, etc., single units $a b_{2}, a b_{3}$, etc., and double units $a b a b_{2}, a b a b_{3}$, etc., where a is the analyzed base and b the remaining three bases. The 18 DNA or RNA of the present investigation can be classified into four groups with different fields of the structure map. All bases of the first group are on C1-C4 fields of the structure map with an increased clustering of all bases. The t bases of the second group, the g bases of the third group and t or g of the last example (secA 4) contain an increased amount of double units txtx_{n} or gxgx_{n}, where t or g bases are separated by $n \geq 2$ other bases x .
The different α_{i} values can be correlated with the percentage of aa clusters and to some extent also with the triplets of protein coding.

A sequence of $\mathrm{A}, \mathrm{B}, \mathrm{Z}$, and X values for the stacking of the four bases similar to the c, h, s, and t values of the layered compounds (Table 2) would show the correlations between the sequences of bases and the approximated configuration of the helix (A, B, and Z forms).

REFERENCES

1. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, in "Gmelin Handbook of Inorganic and Organometallic Chemistry, TYPIX," Vol. 1. Springer-Verlag, Berlin, 1993.
2. F. Hulliger, "Physics and Chemistry of Materials with Layered Structures" (F. Lévy, Ed.) Vol. 5. Reidel, Dordrecht, 1976.
3. L. Pauling, "The Nature of the Chemical Bond," Cornell Univ. Press, Ithaca, NY, 1945,1960.
4. J. Hauck and K. Mika, in "Intermetallic Compounds," Vol. 1, "Principles" (J. H. Westbrook and R. L. Fleischer, Eds.), p. 277. Wiley, London, 1994. 5. J. Hauck and K. Mika, J. Solid State Chem. 138, 334 (1998).
5. J. W. Dale, "Molecular Genetics of Bacteria," Wiley, Chichester, 1996.
6. J. P. Glusker, L. Mitchell, and M. Rossi, "Crystal Structure Analysis for Chemists and Biologists," VCH, Weinheim, 1994.
7. R. E. Diekerson et al., J. Mol. Biol. 205, 787 (1989).
8. S. R. Holbrook and S.-H. Kim, Biopolymers 44, 3 (1997).
9. K. Schubert, "Kristallstrukturen zweikomponentiger Phasen" [Crystal Structures of Binary Phases], Springer-Verlag, Berlin, 1964.
10. GenBank of the National Center for Biotechnology Information.
